The five-dimensional complete left-symmetric algebra structures compatible with an abelian Lie algebra structure
نویسندگان
چکیده
منابع مشابه
Poisson Structures Compatible with the Cluster Algebra Structure in Grassmannians
We describe all Poisson brackets compatible with the natural cluster algebra structure in the open Schubert cell of the Grassmannian Gk(n) and show that any such bracket endows Gk(n) with a structure of a Poisson homogeneous space with respect to the natural action of SLn equipped with an R-matrix Poisson-Lie structure. The corresponding R-matrices belong to the simplest class in the Belavin-Dr...
متن کاملL∞ algebra structures of Lie algebra deformations
In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or L∞ algebra. All such obstructions have been transfered to the revelvant L∞ algebras which contain only three terms.
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملCounting the Relations Compatible with an Algebra
We investigate when a finite algebra admits only a finite number of compatible relations (modulo a natural equivalence). This finiteness condition is closely related to others in the literature, and arises naturally in duality theory. We find necessary conditions for a finite algebra to admit only finitely many compatible relations, as well as a family of examples of such algebras. The classic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(96)00591-5